Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(8): e29382, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38660246

RESUMEN

CRISPR-based screens have discovered novel functional genes involving in diverse tumor biology and elucidated the mechanisms of the cancer pathological states. Recently, with its randomness and unbiasedness, CRISPR screens have been used to discover effector genes with previously unknown roles for AML. Those novel targets are related to AML survival resembled cellular pathways mediating epigenetics, synthetic lethality, transcriptional regulation, mitochondrial and energy metabolism. Other genes that are crucial for pharmaceutical targeting and drug resistance have also been identified. With the rapid development of novel strategies, such as barcodes and multiplexed mosaic CRISPR perturbation, more potential therapeutic targets and mechanism in AML will be discovered. In this review, we present an overview of recent progresses in the development of CRISPR-based screens for the mechanism and target identification in AML and discuss the challenges and possible solutions in this rapidly growing field.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167159, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38583815

RESUMEN

Chimeric antigen receptor T (CAR-T) cell therapy is regarded as a potent immunotherapy and has made significant success in hematologic malignancies by eliciting antigen-specific immune responses. However, response rates of CAR-T cell therapy against solid tumors with immunosuppressive microenvironments remain limited. Co-engineering strategies are advancing methods to overcome immunosuppressive barriers and enhance antitumor responses. Here, we engineered an IL-2 mutein co-engineered CAR-T for the improvement of CAR-T cells against solid tumors and the efficient inhibition of solid tumors. We equipped the CAR-T cells with co-expressing both tumor antigen-targeted CAR and a mutated human interleukin-2 (IL-2m), conferring enhanced CAR-T cells fitness in vitro, reshaped immune-excluded TME, enhanced CAR-T infiltration in solid tumors, and improved tumor control without significant systemic toxicity. Overall, this subject demonstrates the universal CAR-T cells armed strategy for the development and optimization of CAR-T cells against solid tumors.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38592427

RESUMEN

The current CAR-T cell therapy products have been hampered in their druggability due to the personalized preparation required, unclear pharmacokinetic characteristics, and unpredictable adverse reactions. Enabling standardized manufacturing and having clear efficacy and pharmacokinetic characteristics are prerequisites for ensuring the effective practicality of CAR-T cell therapy drugs. This review provides a broad overview of the different approaches for controlling behaviors of CAR-T cells in vivo. The utilization of genetically modified vectors enables in vivo production of CAR-T cells, thereby abbreviating or skipping the lengthy in vitro expansion process. By equipping CAR-T cells with intricately designed control elements, using molecule switches or small-molecule inhibitors, the control of CAR-T cell activity can be achieved. Moreover, the on-off control of CAR-T cell activity would yield potential gains in phenotypic remodeling. These methods provide beneficial references for the future development of safe, controllable, convenient, and suitable for standardized production of CAR-T cell therapy products.

4.
Microbiol Spectr ; 12(1): e0222723, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38059627

RESUMEN

IMPORTANCE: Staphylococcus aureus is a Gram-positive opportunistic bacterium that is responsible for the majority of skin infections in humans. Our study provides important molecular insights into the pathogenesis of S. aureus skin infections and identifies a potential therapeutic target for the treatment of these infections. Our findings also indicate that ß-hemolysin (Hlb) secreted by colonized S. aureus is a risk factor for epidermal growth factor receptor (EGFR)-related diseases by acting as an agonist of EGFR. The neutralized monoclonal antibody we have developed for the first time will provide a functional inhibitor of Hlb. This study provides important insights to better understand the relationship between the skin colonization of S. aureus and inflammatory skin diseases.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , Proteínas Hemolisinas/metabolismo , Piel/microbiología , Receptores ErbB/metabolismo , Infecciones Estafilocócicas/microbiología , Inflamación/patología
5.
Front Microbiol ; 12: 692279, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335518

RESUMEN

Staphylococcus aureus is a major pathogenic bacterium that causes a variety of clinical infections. The emergence of multi-drug resistant mechanisms requires novel strategies to mitigate S. aureus infection. Alpha-hemolysin (Hla) is a key virulence factor that is believed to play a significant role in the pathogenesis of S. aureus infections. In this study, we screened a naïve human Fab library for identification of monoclonal antibodies targeting Hla by phage display technology. We found that the monoclonal antibody YG1 blocked the Hla-mediated lysis of rabbit red blood cells and inhibited Hla binding to A549 cells in a concentration-dependent manner. YG1 also provided protection against acute peritoneal infection, bacteremia, and pneumonia in murine models. We further characterized its epitope using different Hla variants and found that the amino acids N209 and F210 of Hla were functionally and structurally important for YG1 binding. Overall, these results indicated that targeting Hla with YG1 could serve as a promising protective strategy against S. aureus infection.

6.
Front Cell Infect Microbiol ; 11: 658141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854984

RESUMEN

IFN-γ is produced upon stimulation with S. aureus and may play a detrimental role during infection. However, whether hemolysins play a role in the mechanism of IFN-γ production has not been fully characterized. In this study, we demonstrated that Hlb, one of the major hemolysins of S. aureus, upregulated IFN-γ production by CD56bright NK cells from human peripheral blood mononuclear cells (PBMCs). Further investigation showed that Hlb increased calcium influx and induced phosphorylation of ERK1/2. Either blocking calcium or specifically inhibiting phosphorylation of ERK1/2 decreased the production of IFN-γ induced by Hlb. Moreover, we found that this process was dependent on the sphingomyelinase activity of Hlb. Our findings revealed a novel mechanism of IFN-γ production in NK cells induced by Hlb, which may be involved in the pathogenesis of S. aureus.


Asunto(s)
Leucocitos Mononucleares , Staphylococcus aureus , Antígeno CD56 , Proteínas Hemolisinas , Humanos , Interferón gamma , Células Asesinas Naturales , Esfingomielina Fosfodiesterasa
7.
Front Immunol ; 12: 654649, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868297

RESUMEN

Extracellular traps released by neutrophils (NETs) are essential for the clearance of Pseudomonas aeruginosa. Alkaline protease (AprA) secreted by P. aeruginosa negatively correlates with clinical improvement. Moreover, anti-AprA in patients with cystic fibrosis (CF) can help identify patients with aggressive forms of chronic infection. However, the mechanism underlying the clinical outcomes remains unclear. We demonstrated that aprA deficiency in P. aeruginosa decreased the bacterial burden and reduced lung infection. AprA degraded NET components in vitro and in vivo but did not affect NET formation. Importantly, antibodies induced by AprA acted as an agonist and directly enhanced the degrading activities of AprA. Moreover, antisera from patients with P. aeruginosa infection exhibited antibody-dependent enhancement (ADE) similar to that of the antibodies we prepared. Our further investigations showed that the interaction between AprA and the specific antibodies might make the enzyme active sites better exposed, and subsequently enhance the recognition of substrates and accelerate the degradation. Our findings revealed that AprA secreted by P. aeruginosa may aggravate infection by destroying formed NETs, an effect that was further enhanced by its antibodies.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Endopeptidasas/inmunología , Trampas Extracelulares/inmunología , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Endopeptidasas/genética , Endopeptidasas/metabolismo , Trampas Extracelulares/enzimología , Femenino , Interacciones Huésped-Patógeno/inmunología , Humanos , Ratones , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/metabolismo , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/patología , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/patogenicidad
8.
BMC Microbiol ; 18(1): 181, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30419818

RESUMEN

BACKGROUND: Staphylococcus aureus is a leading cause of Gram-positive bacterial infections worldwide; however, the treatment of S. aureus infection has become increasingly difficult due to the prevalence of methicillin-resistant S. aureus strains, highlighting the urgent need for the development of novel strategies. The complexity of S. aureus pathogenesis relies on virulence factors. Recent studies have demonstrated that leukocidins expressed by the majority of clinical isolates play important roles in the pathogenesis of S. aureus. RESULTS: In this study, we developed three human monoclonal antibodies against all F-components of leukocidins HlgABC, LukSF, and LukED with high affinity. These antibodies were found to be capable of blocking leukocidin-mediated cell lysis in vitro. Furthermore, the antibodies dramatically reduced disease progression and mortality after S. aureus infection in vivo. CONCLUSIONS: Our findings revealed that neutralizing bicomponent leukocidins may be a promising strategy to combat infections caused by S. aureus.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Proteínas Hemolisinas/inmunología , Leucocidinas/inmunología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/mortalidad , Staphylococcus aureus/fisiología , Animales , Anticuerpos Monoclonales/inmunología , Progresión de la Enfermedad , Eritrocitos/efectos de los fármacos , Femenino , Proteínas Hemolisinas/toxicidad , Hemólisis/efectos de los fármacos , Humanos , Leucocidinas/toxicidad , Ratones Endogámicos BALB C , Pruebas de Neutralización , Conejos , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética
9.
Nat Microbiol ; 3(5): 622-631, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29662128

RESUMEN

Insulin resistance is a risk factor for obesity and diabetes and predisposes individuals to Staphylococcus aureus colonization; however, the contribution of S. aureus to insulin resistance remains unclear. Here, we show that S. aureus infection causes impaired glucose tolerance via secretion of an insulin-binding protein extracellular domain of LtaS, eLtaS, which blocks insulin-mediated glucose uptake. Notably, eLtaS transgenic mice (eLtaS trans ) exhibited a metabolic syndrome similar to that observed in patients, including increased food and water consumption, impaired glucose tolerance and decreased hepatic glycogen synthesis. Furthermore, transgenic mice showed significant metabolic differences compared to their wild-type counterparts, particularly for the early insulin resistance marker α-hydroxybutyrate. We subsequently developed a full human monoclonal antibody against eLtaS that blocked the interaction between eLtaS and insulin, which effectively restored glucose tolerance in eLtaS trans and S. aureus-challenged mice. Thus, our results reveal a mechanism for S. aureus-induced insulin resistance.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Resistencia a la Insulina , Insulina/metabolismo , Infecciones Estafilocócicas/complicaciones , Staphylococcus aureus/patogenicidad , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacología , Proteínas Bacterianas/metabolismo , Sitios de Unión , Línea Celular , Femenino , Células Hep G2 , Humanos , Hidroxibutiratos/metabolismo , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Ratones , Ratones Transgénicos , Ratas , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...